

s

Bilkent University

Senior Design Project

Project short-name: rendt

Low-Level Design Report

Project Group Members:
Cenk Er 21600937
Huseyn Allahyarov 21503572
Ibrahim Mammadov 21603109
Mahammad Shirinov 21603176
Nurlan Farzaliyev 21503756

Supervisor: İbrahim Körpeoğlu
Jury Members: Hamdi Dibeklioğlu and Özcan Öztürk

Low-Level Design Report

February 17, 2020

This report is submitted to the Department of Computer Engineering of Bilkent University

in partial fulfillment of the requirements of the Senior Design Project course CS491/2.

Contents

Introduction 3

Object design trade-offs 3

Usability vs. Functionality 3

Native vs. Virtual 3

Portability vs. Security 4

Interface documentation guidelines 4

Engineering standards (e.g., UML and IEEE) 4

Definitions, acronyms, and abbreviations 4

Packages 6

Server 7

Logic Tier 7

Data Tier 8

Client 8

Controller 8

Presentation 9

Class Interfaces 10

Server 10

Logic Tier 10

Data Tier 14

Client 14

Controller 14

Presentation 18

References 23

2

1 Introduction

With the ever-growing advancements in computer algorithms, machine

learning tools, and with the availability and accessibility of such tools,

distributed computing and cloud computing systems have become

extremely widespread, to the point of almost being a necessity.​[1][2]

The biggest players in these fields are currently Amazon (AWS), Microsoft

(Azure) and Google (Google Cloud). What’s common among these

providers is that they all have large centralized networks of nodes

somewhere in a server farm (or several farms), and they provide users

with computing power and other services such as storage using parts of

that network.

The fact that all the nodes belong to one party and are hosted in one or a

few dedicated locations gives them great reliability and ability to offer

good pricing. However, since there are few providers and millions of users,

only the few big players make revenue. Also, the amount of computing

power that is available is dictated by the sole provider.

With Rendt we propose an alternative solution to this vast need of

distributed and cloud computing power, where multiple parties can offer

their machines and get paid in return, while users will still have access to

the computing power that they need for their projects and experiments.

Similar solutions have been used in the academic community to solve

problems like the decomposition of natural numbers as a sum of three

cubes,​[3]​
 but they are voluntary in nature and have no commercial use.​[4]

1.1 Object design trade-offs

1.1.1 Usability vs. Functionality

Rendt aims to appeal to people from every background, for the leasing

part at least. To avoid any dependence on technical background, we aim

to design our user interface adequately straightforward for ease of use

and minimal user interaction for the leasers. For the renters however,

technical background is an important factor. Nevertheless, UI will be easy

to use for both types of users. By this choice, we may trade advanced

functionalities of the system for ease of use and larger user base.

1.1.2 Native vs. Virtual

To provide the necessary security, we are aiming for a virtual environment

instead of native execution. However, latest developments in CPU

technology now let users utilize Hyper-V or similar technologies to offer

native-like performance on virtual environments. Our aim is to minimize

hardware damage and application misuse by providing a Docker container

for the executions. By using containers, we will also be able to follow the

same execution style for every user and computer.

3

1.1.3 Portability vs. Security

Rendt requires Docker installation for leasing. Docker installation may

increase the size of the application, but with Docker installation we are

aiming to provide a fully secure execution environment. Any type of

misuse or hardware damage will not be reflected on the real hardware or

OS components of the system, instead on the containers and related

parts.

1.2 Interface documentation guidelines

Class ClassName

Class description

Attributes

attribute attribute description

Methods

method method description

1.3 Engineering standards (e.g., UML and IEEE)

In this report, for our models such as class, package, object etc. diagrams

we followed UML guidelines. Since in our classes and almost all diagrams

we used UML guidelines we considered this would be more appropriate.

We followed the IEEE citation style for our references because this citation

method is common among engineers.

1.4 Definitions, acronyms, and abbreviations

RENDT​: Remote Execution and Distribution of Tasks

Renter​: User looking for a leased computer to be rented

Leaser​: User leasing his/her computer for rental

Listing​: Collection of data concerning a leaser’s leasing terms

and conditions (performance, availability etc.)

Remote​: Distant as in computer(s) not nearby

Execution​: Compiling and running a task to get a result

Distribution​: Running different tasks of the program on

 multiple leased computers for performance

Task​: Unit(s) of program to be run and executed

4

Virtualization​: A virtual environment for tasks to be executed

safely

VM​: Virtual Machine (or Environment)

OS​: Operating System

Cross-platform​: Compatible with multiple platforms and devices

UML: Unified Modeling Language

IEEE: Institute of Electrical and Electronics Engineers

5

2 Packages

6

2.1 Server

Server is the component in rendt’s architecture that is responsible for

overseeing job allocation and delivery of results, as well as payment. It is

organized into a Logic Tier and Data Tier.

2.1.1 Logic Tier

The logic tier incorporates all the vital responsibilities of the server. It

authenticates users, handles requests that come to the server and

oversees task execution and results delivery between renter and leaser

nodes. It also provides payment services.

AuthenticationManager:​ is responsible for authentication of users:

creating accounts and accessing existing ones. When a client logs in to

their account, they are issued an AuthToken that the client then uses in all

their requests to the server.

ServerEventHandler: ​is the main processing object in the server. All the

communication between client and server (including login and signup)

passes through this point. A renter will communicate with this object

before sending a task, and ask for permission. ServerEventHandler object

will issue permission and will allocate (using FileDatabaseManager object,

see below) space on the File Database for the files to be uploaded to, and

will share a token that will allow this upload with the client. Also, after a

leaser has executed a task, it will again ask for permission to upload

results, and this object will issue permission and database token for

uploading of results. Other than that, event handler object will receive

data queries from the client (available listings, profile info), query it from

Server Database and serve that information to the Client.

FileDatabaseManager: ​is responsible for overseeing the data transfer

between renters and leasers through the separate database component. It

will allocate space as needed, and issue tokens for secure access to this

space.

DatabaseToken: ​a token object that will contain address information and

secure key to access (upload to/download from) File Database.

AuthToken: ​a token object issued to a user when logging in which will

authorize all server requests.

LeaserPayInfo: ​This class represents a leaser payment info. Its objects

hold respective leaser’s card details such as the owner's name, card

number, expiration date and so on.

RenterPayInfo: ​This class represents a renter payment info. Its objects

hold respective account details that belong to the respective user.

Payment: ​This class represents a payment object. It will handle the

money transactions, basically the payments at the end of the sessions.

7

2.1.2 Data Tier

This layer is responsible for storing data about the user profiles, active

listings and also past actions that have taken place on the server. It also

contains private login information.

Server Database: ​is an object for accessing the database internal to the

server, which is used to store

● login data

● user profile data

● current and past listings

● past transactions between users and some relevant information

about them, like duration, cost, outcome, reliability etc.

2.2 Client

Client subsystem consists of presentation (view) and controller. These are

respectively the GUI and functionality managers of client side subsystem.

In controler part there are a bunch of classes that maintain the local side

of the application by identifying different types of users(leaser and

renter), introducing connection managers for server and database,

creating tasks and defining ultimate manager for the whole session of the

application. Most parts of the client controller, especially task execution in

leaser object, is executed in a virtual environment. In fact, the virtual

environment is responsible for running jobs on leaser clients that are sent

by senders. We will use Docker containers to run/execute the files that are

sent by the renters to create virtual environment for the file and to

prevent leasers to access those files.

2.2.1 Controller

This controller package is for the main functionalities of the application.

ServerConnectionManager: ​This class will manage connection between

the server and the clients. Mainly it will ask for connection permission with

the server so that the files of renter could be uploaded to the database.

Database token will be needed for getting permission from the server

DatabaseConnectionManager: ​This class will manage connection with

the database that will be used during sending and receiving of execution

files. After server connection manager receives permission and token

database connection manager uploads or downloads files from the

database depending on the operation

SessionManager: ​This class is the main one in the whole system. First it

logs in the user and obtains authentication token and establishes the

connection with the server. Then depending on users demand and

authentication token it log in either leaser or renter account.

Renter: ​This class represents a renter object. It establishes the

connection with the server, creates tasks from provided files and their

8

locations and calls SeverConncetionManager and

DatabaseConnectionManager in specified order for the further flow of the

sending process. After the task is executed the same procedure should be

in order to download executed files and the payment system should be

called at the very end.

Leaser: ​This class represents a leaser object. Technically it is very similar

to Renter. This object communicates with the server, downloads files for a

specific task, executes them and uploads back the results.

Task: ​This class represents a task object. By using user id and file

locations in the local system it creates an object of the task and assigns it

a unique task id the is going to be referred to throw out all transaction.

2.2.2 Presentation

This presentation package is for the user interface of the application.

LoginView: ​This view is for logging into the system. By using

username/email and password, users will be able to sign in and use the

application as a renter or leaser.

ForgotPasswordView: ​This view is for requesting a password reset in

case of forgetting the password. Users need to enter the email address of

the account to send a password reset request. A custom ID, valid for an

hour, will be generated and sent to the user for the request to be finished

and resetting the password.

ResetPasswordView: ​This view will follow the ForgotPasswordView

screen and with custom ID and new password entered, users will be able

to reset their password and sign into the system.

RegistrationView: ​This view is for the users to create an account and

start to use the application. With the entered credentials a new account

will be created for the user with a uniquely generated ID.

ProfileView: ​This view will display the profile information of a user. If

shown profile is the users’ own, they will be able to edit their information

and credentials on the same screen. Important profile credentials such as

email address will be accessible only by the profile owners.

FirstTimeInteractionView: ​This view will follow logging into the system

and will show quick tips and instructions for using the application once the

application is started for the first time. In the latter executions, this view

will not be shown.

UsageTypeView: ​This view will be presented to the user for selection of

usage types, namely, renter and leaser. Once the user selects renter or

leaser type, he/she will be directed to the following view.

ListingsView: ​This view will be shown to the renters and will list the

current leasers and available leased computers. Adequate information with

9

important specifications of the system will be shown to the user for

selection of the system/computer.

SpecificationsView: ​This view will be shown to the leasers and will allow

them to specify the hardware configuration and availability of their system

for leasing. Leasers will also select the availability duration for their

computers and price for the leasing.

FileUploadView: ​This view will be shown to the renters who have

successfully rented a leased computer to upload their files to be executed.

After selecting the files to be executed, files will be uploaded to the leased

computer and upload progress will be shown to the renters.

ProgressView: ​This view will display the status and progress of the

executions to the renter with session’s elapsed time. Ideally, outputs from

the files will be shown directly to the renters. Renters will be able to

download the resulting files from the leased computer.

PaymentView: ​This view will be shown to the renter after the session

ends. With the selected payment method, renters will pay for the

execution duration and end the rental session.

3 Class Interfaces

3.1 Server

3.1.1 Logic Tier

Class ServerEventHandler

Object that handles server events

Attributes

FileDatabase fileDB

ServerDatabase serverDB

AuthenticationManager

authManager

instance of File database object

instance of Server database object

instance of AuthenticationManager

object

Methods

ServerEventHandler()

DatabaseToken

getPermission(AuthToken

authToken, metadata)

AuthToken authenticateUser(string

login, string password)

class constructor

asks for permission to upload files

to the File database

communicates with authentication

manager and returns an

authentication token to user

10

int registerUser(string email, string

password)

void addListing(AuthToken token,

void* listingData)

void* getUserInfo(int userId,

AuthToken token)

void*

getAvailableListings(AuthToken

token)

void* getUserHistory(int userId)

communicates with authentication

manager and creates a new user

account, returns user ID

adds a listing (sent from a leaser)

to the database of listings

queries user information from

Server Database and returns (to

the client)

queries available listings from

Server Database and returns (to

the client)

queries the Server database for

past transactions of a user and

returns (to the client)

Class AuthenticationManager

Provides authentication for users.

Attributes

ServerDatabase db

void* credentials

instance of server database

credentials for accessing the server

database

Methods

authToken authenticate(string

login, string password)

int registerUser(string email, string

password)

bool verifyToken(AuthToken token)

authenticates user and returns

token for communication with the

server and database

creates a new user account,

returns user ID

checks if a given token is valid

Class FileDatabase

Object that handles temporary transfer of data between users

11

Attributes

void* credentials credentials for accessing the file

database

Methods

FileDatabase()

DatabaseToken allocateSpace()

class constructor

allocates space for files to be

uploaded and returns token to

allow upload/download

Class AuthToken

Token file that gives access to database upload/download actions.

Attributes

string tokenId token ID

Methods

AuthToken() class constructor. generates token

Class LeaserPayInfo

Object that holds leaser’s payment information/card details

Attributes

long taskId

string fullName

string cardNumber

int expMonth

int expYear

int CVVData

ID of the task

name of the card owner

card number

expiration month

expiration year

card CVV data

Methods

getCardDetails()

returns a list of card details

12

setLeaserPayInfoDetails(...) sets leaser’s card details, such as

name, card number, expiration

month/year

Class RenterPayInfo

Object that holds renter’s payment information/account details

Attributes

long taskId

string fullName

string stripeAccountId

string stripeAccountPassword

ID of the task

name of the account owner

ID of the stripe account of the

renter

password of the stripe account

Methods

getAccountDetails()

setAccountDetails(...)

returns a list of account details

sets renter’s account details such

as name, stripe account

ID/password with the given

arguments

Class Payment

Object that deals with the transactions

Attributes

LeaserPayInfo leaserPay

RenterPayInfo renterPay

int paymentStatus

LeaserPayInfo object

RenterPayInfo object

status of payment

Methods

int process(long taskId, int

leaserId)

finishes the transaction by getting

transaction and account details of

the partakers and returns payment

status

13

3.1.2 Data Tier

Class ServerDatabase

Object that manages data about listings, users and history

Attributes

Methods

ServerDatabase()

void* queryUserInfo(int userId)

void* queryAvailableListings()

void* queryUserHistory(int userId)

class constructor

queries the SQL database for info

of the specified user

queries the SQL database for all

active listings

queries the SQL database for past

transactions of a user

3.2 Client

3.2.1 Controller

Class SessionManager

Central object on the Client side that is run when initiating the program

Attributes

ServerEventHandler server

Renter renter

Leaser leaser

event handler instance of the

server. logs in the user and obtains

token

renter object corresponding to this

client machine

leaser object corresponding to this

client machine

Methods

SessionManager() creates (gets) the Server Event

Handler object from the server.

initializes the client program

14

Class Renter

Object of renter client

Attributes

int userId

AuthToken authToken

ServerConnectionManager

serverManager

DatabaseConnectionManager

databaseManager

RenterPayInfo renterPay

id of the user

authentication token of user

server connection manager object

database connection manager

object

object to provide renter’s bank

account details for transactions

Methods

Renter(AuthToken authToken)

Task createTask(string path)

long submitTask(string path, int

userId, int nodes=1)

void getResults(long taskId)

class constructor. creates Renter

object and establishes connection

with the server and database.

creates a task object

creates and submits created task

to the server. returns taskId.

download the results of an

executed task

Class Leaser

Object of leaser client

Attributes

int userId

string defaultDownloadPath

AuthToken authToken

ServerConnectionManager

serverManager

id of the user

location on client’s machine where

to download task files

authentication token of user

server connection manager object

15

DatabaseConnectionManager

databaseManager

LeaserPayInfo leaserPay

database connection manager

object

user’s payment details for

transactions and payments

Methods

Leaser(AuthToken authToken)

void addListing(void* listingData)

void respondTaskRequest(long

taskId, bool accept, string path)

void executeTask(string path)

void writeOutputToFile(string

outFilePath)

void submitResults(string

resultsPath, long taskId)

class constructor. creates Renter

object and establishes connection

with the server and database.

submits a listing to the Server

accept/reject task execution

request

executes downloaded task

writes the output of execution to a

file located at outFilePath

uploads results of the executed

task to the server

Class Task

Wrapper class for tasks.

Attributes

long taskId

int userId

string path

global id of the task assigned by

the server

id of the user that created task

local path to the files of Task

Methods

Task(int userId, string path) class constructor

Class ServerConnectionManager

16

Object that provides communication between the server and client

Attributes

ServerEventHandler server event handler instance of the

server

Methods

ServerConnectionManager()

DatabaseToken

getPermission(metadata)

establishes connection with server

asks for permission to submit task

Class DatabaseConnectionManager

Object that provides communication with the database.

Attributes

FileDatabase database event handler instance of the

server

Methods

DatabaseConnectionManager()

int uploadFiles(string path,

DatabaseToken token)

void downloadFiles(string path,

DatabaseToken token)

class constructor

uploads files related to task to the

database. returns the location of

the uploaded file in DB.

downloads the files on the file

database (specified by the token)

to the (local) path

Class DatabaseToken

Token file that gives access to database upload/download actions.

Attributes

string address

string password

address in the database where one

should up/download

corresponding password

17

Methods

DatabaseToken(string address,

string password)

class constructor

3.2.2 Presentation

Class LoginView

View for logging into the system.

Attributes

QLineEdit​[5]​
 emailOrUsername

QLineEdit password

email address or username of the

user

password of the user

Methods

LoginView() class constructor

Class ForgotPasswordView

View for requesting password reset in case of forgotten password.

Attributes

QLineEdit email email address of the user

Methods

ForgotPasswordView() class constructor. Sends request

for a password reset.

Class ResetPasswordView

View for resetting the password if it is forgotten.

Attributes

QLineEdit newPassword

QLineEdit resetPasswordId

new password of the user

uniquely generated password reset

ID for authentication

Methods

18

ResetPasswordView() class constructor. Resets the

password.

Class RegistrationView

View for registration of a new account.

Attributes

QLineEdit email

QLineEdit name

QLineEdit surname

QLineEdit username

QLineEdit password

email address of the user

first name of the user

surname of the user

username of the user

password of the user

Methods

RegistrationView() class constructor.

Class ProfileView

View for displaying profile information of a user.

Attributes

QLabel​[6]​
 username

QLabel name

QLabel surname

int userId

username of the user

first name of the user

surname of the user

ID of the user

Methods

ProfileView(int userId) class constructor. Displays the

profile of the user with the given

userId.

Class FirstTimeInteractionView

View for instructions and quick tips for using the application in first

launch.

19

Attributes

Methods

FirstTimeInteractionView() class constructor

Class UsageTypeView

View for the selection of usage type; renter or leaser.

Attributes

Methods

UsageTypeView() class constructor

Class ListingsView

View for listing the available computers to be leased.

Attributes

Leaser leasers[] list of the available leased

computers

Methods

ListingsView() class constructor

Class SpecificationsView

View for the specification and configuration of the leased computer

hardware.

Attributes

Methods

SpecificationsView() class constructor

20

Class FileUploadView

View for uploading files to be executed on the leased computer.

Attributes

File files[]

QLineEdit args

long taskId

list of files to be executed

arguments for custom execution

and details

ID of the current task assigned by

the server

Methods

FileUploadView(long taskId) class constructor

Class ProgressView

View for the displaying the elapsed time for the rental process and

status of the execution.

Attributes

long taskId

Time elapsedTime

QLabel status

ID of the current task

variable holding the elapsed time

duration for the process

status of the execution

Methods

ProgressView(long taskId) class constructor

Class PaymentView

View for finishing the session and payment.

Attributes

long taskId

int renterId

int leaserId

ID of the current task

user ID of the renter

user ID of the leaser

21

double price

Payment payment

price to be paid for the session

payment object for finishing the

session and handling transaction

Methods

PaymentView(long taskId, int

leaserId)

class constructor

22

4 References

[1] “What is distributed computing and what’s driving its adoption?”. Packt.
https://hub.packtpub.com/what-is-distributed-computing-and-whats-driving-its-adopt
ion/ (accessed October 14, 2019).

[2] "The Distributed Computing Paradigms: P2P, Grid, Cluster, Cloud, and Jungle".
Dr. Brijender Kahanwal, Dr. T. P. Singh. International Journal of Latest Research
in Science and Technology, Vol. 1, No. 2, pp. 183-187, 2012

[3] University of Bristol. "Sum of three cubes for 42 finally solved -- using real life
planetary computer." ScienceDaily.
www.sciencedaily.com/releases/2019/09/190906134011.htm (accessed October
14, 2019).

[4] “Seven Ways to Donate Your Computer's Unused Processing Power”. Vice.
https://www.vice.com/en_us/article/bmj9jv/7-ways-to-donate-your-computers-un
used-processing-power (accessed October 14, 2019).

[5] Qt Documentation. “QLineEdit Class | Qt Widgets”.
 ​https://doc.qt.io/qt-5/qlineedit.html

[6] Qt Documentation. “QLabel Class | Qt Widgets”.
 ​https://doc.qt.io/qt-5/qlabel.html

23

https://www.vice.com/en_us/article/bmj9jv/7-ways-to-donate-your-computers-un
https://doc.qt.io/qt-5/qlineedit.html
https://doc.qt.io/qt-5/qlabel.html

