

Bilkent University

Senior Design Project

Project short-name: rendt

Final Report

Project Group Members:
Huseyn Allahyarov 21503572
Mahammad Shirinov 21603176
Ibrahim Mammadov 21603109
Cenk Er 21600937
Nurlan Farzaliyev 21503756

Supervisor: İbrahim Körpeoğlu
Jury Members: Hamdi Dibeklioğlu and Özcan Öztürk

Final Report

May 27, 2020

This report is submitted to the Department of Computer Engineering of Bilkent University

in partial fulfillment of the requirements of the Senior Design Project course CS491/2.

Contents

Introduction 3

Requirements Details 3
Performance 3
Compatibility 4
Maintainability 4
Security 4
User interface 4
Scalability 4
Reliability 5

Final Architecture and Design Details 5
Cloud 6
Client 6

Development/Implementation Details 6
Client Application 6
Virtual Environment (Container) 7
Server and Storage 7
Database 8
Communication 9
Payment System 10
Distributed System 13

Testing Details 14

Maintenance Plan and Details 15

Other Project Elements 16
Consideration of Various Factors 16
Ethics and Professional Responsibilities 17
Judgements and Impacts to Various Contexts 17
Teamwork and Peer Contribution 18
Project Plan Observed and Objectives Met 22
New Knowledge Acquired and Learning Strategies Used 23

Conclusion and Future Work 25
More Secure VE 25
Distributed (clustering system) 25
SSH access to leaser 25
Payment 25
Notifications and mobile app 25

References 26

2

Final Report

Project Short-Name: rendt

1 Introduction
With the ever-growing advancements in computer algorithms, machine learning tools,
and with the availability and accessibility of such tools, distributed computing and
cloud computing systems have become extremely widespread, to the point of almost
being a necessity.[1][2]

The biggest players in these fields are currently Amazon (AWS), Microsoft (Azure)
and Google (Google Cloud). What’s common among these providers is that they all
have large centralized networks of nodes somewhere in a server farm (or several
farms), and they provide users with computing power and other services using parts
of those networks.

The fact that all the nodes belong to one party and are hosted in one or a few
dedicated locations gives them great reliability and ability to offer good pricing.
However, since there are few providers and millions of users, only the few big players
make revenue. Also, the amount of computing power that is available is dictated by
the sole provider.

With Rendt we propose an alternative solution to this vast need of distributed and
cloud computing power, where multiple parties can offer their machines and get paid
in return, while users will still have access to the computing power that they need for
their projects and experiments. Similar solutions have been used in the academic
community to solve problems like the decomposition of natural numbers as a sum of
three cubes,[3] but they are voluntary in nature and have no commercial use.[4]

2 Requirements Details
We had a number of different non-functional requirements specified in the Analysis
Report. Requirements for most of them were met, however some of them were very
hard to achieve and sustain.

2.1 Performance
We initially planned to implement our application in C++ for the sake of high
performance, as we had virtualization as a major part of our application which was
going to significantly drop our performance. C++ was considered as an option to
compensate for the performance drop provided by virtualization tools. However due
to great socket programming support and pyqt5 API (GUI library) provided by python
we decided to use Python.

3

2.2 Compatibility
Rendt is a cross-platform application that supports a wide variety of systems and
OSs. We achieved this by implementing Docker virtualization for actual code
execution, on which you can run any language you wish. You can install Docker on
Linux,MacOS, Windows (except Home edition which is still possible but more
complicated) and this gives the opportunity to run Rendt on any major OS.

2.3 Maintainability
Rendt is utilizing a server to serve the users and renters. Server is responsible for
payment, reliability ratings, rental requests and responses and displaying available
PCs. Storage is responsible for file transfer. Server and Storage are maintained by
us. Maintenance covers server rental payment, network issues with the server and
providing the system online.

2.4 Security
Rendt is providing secure payment system. When the transaction starts time of
execution is recorded and based on that time particular fee will be calculated. The
renter can view and download his executed code only after the payment issues will
be handled, and if leaser has some internet or electricity issues the operation will be
removed, the renter will be notified about this and leaser’s reliability points will be
reduced. The execution environment is not safe completely because of one issue.
Docker which we use as an virtual execution environment needs files to be on real
hardware before it can take and use them in virtual environment. So for several
milliseconds leaser will have chance to view send code before docker takes them,
and also leaser will have several milliseconds to view output after docker will
generate it and before it will be sent it to storage. On the other hand the execution
process is completely safe because if there will be some malicious code send by
renter it will crush docker environment but will have no effect on actual hardware.

2.5 User interface
UI is straightforward and a user without an advanced level of technical knowledge of
computers will be able to operate the rendt app and be able to use it for renting or
using rental PCs. Renters should have some technical background (especially in the
distributed part) because they are in fact those who send code for execution. Leasers
don’t need to have any technical background, everything they need to know will be
explained in the user manual (the installation and use of docker for example).

2.6 Scalability
System is able to serve as many requests at the same time. With the increasing
number of requests and users, the system is able to serve without any compromises.
Distributed execution part also allows renters to create clusters of any size.

4

2.7 Reliability
Rendt is a reliable service for users that need better performing hardware. From
rendt’s side, the server is up and running, serves the requests as necessary,
provides security, scalability and compatibility. For the users’ side, a user reliability
rating system is implemented which is going to be formulated with the help of other
users' feedback and reports which comes after operation abruption.

3 Final Architecture and Design Details
Four major components of our system are the central server, file storage site,
database and client application. The server and file storage site are each deployed
on an AWS EC2 instance. They both have access to our database instance, which is
deployed on AWS RDS. The database instance only serves the server and storage
site, but not the client application. The communication between server and storage
instance is achieved through the database instance.

Figure 1: Rendt Architecture.

The client application stores the address of the central server and storage site, and
sends/receives requests and files as necessary. In the case of a leaser (user that
leases their computational resources), client application also creates and
manipulates a Docker container for isolation and safe job execution.

We have a custom communication protocol and its implementation that runs on top of
TCP and facilitates the communication between clients and server/storage. It defines

5

appropriate headers and standardizes message styles system-wide, and provides
better message passing overall.

3.1 Cloud
We refer to the Central Server, DB instance and storage site collectively as the cloud.
These form an abstraction of a unified server from the client’s point of view. The
server listens for TCP connections from the clients, internally processes their
requests, queries/updates the database as needed, and answers clients back
accordingly. It is responsible for authenticating users, granting upload/download
permissions in the storage site, providing information about users’ submitted job
statuses etc.

The storage site is a simple version of the server instance; it receives client requests
only regarding uploading/downloading files relating to jobs, check for permissions,
and receives/provides the requested files. To use the storage site, i.e. to upload files
pertaining to a job or download outputs of an executed job, the client app connects to
the server and asks for a permission token. The server, having verified that the
requested upload/download action is permissible and/or files are available, issues a
storage token to the client. The server stores a copy of this token on the database
instance. To perform the upload/download action, the client app sends the token it
has previously received from the server to the storage site, where the actual files are
stored. The storage site accesses the database and verifies user token, and upon
success, starts and facilitates the file transfer action.

The database thus serves a double purpose; it facilitates the data storage of our
entire ecosystem (users data, job transactions etc.), and also acts like a
communication bridge between the server and the storage site.

3.2 Client
The client side of Rendt application consists of 2 major parts - sender and receiver
(renter and leaser) objects. They inherit common properties from client class which is
connected to client_messaging class (pipe between clients and server is created
here). All other files related to GUI and authentication are connected with sender and
receiver files, while docker related files are connected with only receiver (actual
execution is triggered in receiver file). “Main function” is in the ui.py file from which
you actually start the application.

4 Development/Implementation Details
4.1 Client Application
The GUI is developed with PyQt5. We used this library as it is one of the favorites for
Python, but ultimately, Qt allows designing and deploying OS-independent
applications for each OS, including mobile environments such as Android and iOS.

6

The final iteration of the design includes 2 Main Windows, namely, LoginWindow and
LoggedInWindow. User first arrives at the Login window with all of its different views
and widgets such as Login, Register and Forgot Password views. After logging into
the system, LoggedInWindow and its components are loaded. This window contains
2 essential parts; Sidebar and Content. Sidebar contains SidebarElement instances
and shows the user current page, available pages to go and lets the user to go
through all the different stages of the application. Content is the dynamic part of the
window and changes depending on the selected page.

Other than serving as a container, LoggedInWindow also has the necessary
communication with the back-end, namely, receiver and sender classes. We may
access and call back-end functions from this class. To do this, each view, page or
class is initialized with a parent class. With a parent variable set, we may access
these features and more by accessing these parent classes. By going up in the
parent hierarchy we arrive at LoggedInWindow. Also this feature becomes handy for
checking Docker information and status in various stages of the workflow.

4.2 Virtual Environment (Container)
We used docker containers to make the users code and leases computer less
reachable and to create a common environment for all users, an environment that is
the same for every renter and every leaser that runs on every operating system.
Docker containers can run on every operating system and run any code that it’s
designed to run. Our containers run on an Ubuntu image. It has an unzip, Python, a
default JDK, GCC compiler, Python3, pip, pip3 and renters can add further
improvements by writing the bash code as they desire. Also, they can retrieve any
trained code peace, any of the files they want to see after execution any output by
simply adding print statements to their code if they want it returned to the bash code
after execution. After making the decision of how we want to build the container
image then we decided how to run. At first we were adding files for execution while
building but then we decided it was a slow process and we should not need to build
our Docker container image every time a leaser wants to lease their computer since
they pay by the hour. So, then we made changes and we created a way to pass the
zip into a running container, unzip it, then run the bash code inside it, take the output
file and put it to the output directory where everything renter needs that she/he sent
there zip that directory and send it back to the renter. So, that way if something bad is
sent to someone it will be opened inside a container or if something goes wrong and
it might damage files it will happen to the container and leasers will be safe.

4.3 Server and Storage
The serve and storage implementation are very similar; in fact, storage was built after
the server using the same logic and code snippets, so we describe them together.

7

The server and storage are driven by multithreaded python applications that listen to
client connections, and upon receipt thereof, serve their requests on a newly created
thread. The server (and storage) accepts TCP connections and parses received data
through the custom messaging protocol. Each client message has a field specifying
the type of request that the client is making, e.g. sign-in. The server script has
separate functionality for each request type, so according to the request type, a
different code snippet is run.

The server and storage are each located on an AWS EC2 t2.micro instance. All
throughout development, we connected to them via Secure Shell (ssh) and ran
locally developed files and conducted tests. The server and storage code is
implemented with extensive logging functionality, which makes it easy to debug and
troubleshoot problems.

In view of the importance of user data privacy, the server and storage are configured
to wrap all connections with TLS [5] (Transport Layer Security). Both have a
self-signed certificate that can be verified by clients. All connections are thus
encrypted and user information, in particular passwords and email addresses are
safe.

To facilitate the communication with and data manipulation on the relational
database, the server and storage are equipped with a custom database querying
module (which uses python mysql-connector [6]), where all the necessary queries for
the functionality of our system are implemented.

The server side also has a module containing cryptographic functions for hashing
and salting user passwords, and for verifying them. Apart from these, the server is
equipped with several token- and id-generators, which it uses for generating user
IDs, job IDs, storage file tokens and others.

For file verification, files that are sent by storage to the clients are accompanied by a
checksum [7] to validate the integrity of the files, and re-download if necessary.

4.4 Database
We have created our database instance on Amazon’s RDS. We have chosen MySQL
as the engine type for our database. We have preferred SQL over NoSQL since there
are relations between the data types; stability and data integrity is needed, and we
are not expecting changes or growth on our database etc. [8]. After creating the
database we have used MySQL Workbench [9] as a tool to connect, manage,
manipulate, modify etc. our database. It allows us to run the queries to make required
changes or retrieve or check the data, and also due to its nice UI we could make
some simple changes very fast, which saved us some time.

Tables in our database:
➔ active_auth_tokens

8

◆ This table keeps track of the authentication tokens which are active at
the moment by holding data of user_id, auth_token, time_issued

➔ archived_auth_tokens
◆ This table keeps track of the authentication tokens which have been

used before and being archived by holding data of user_id,
auth_token, time_issued

➔ exec_file_tokens
◆ This table stores tokens that give access to (executable) file upload

to/download from the storage site. It holds job_id, db_token, file_size.
➔ output_file_tokens

◆ This table stores tokens that give access to (output) file upload
to/download from the storage site. It holds job_id, db_token, file_size.

➔ job_orders
◆ This table keeps track of the jobs that have been submitted and

accepted already by holding data of order_id, renter_id, job_id,
job_desc, job_mode, file_size, leaser_id, status, exec_start_time,
exexc_finish_time

➔ jobs
◆ This table keeps track of the available jobs that have been submitted

by the renters but not accepted by any leasers yet. The table hold data
related to job_id, user_id, job_type, files_size, job_status,
additional_comments)

➔ leasers
◆ This table saves the data of the users who accept the jobs to be run

on their computers by holding data of user_id, status, short_info,
machine_details, price.

➔ passwords
◆ This table keeps the passwords of the users by holding email_address

and password_hash. Passwords are not stored in cleartext but are
salted and hashed, for security reasons [10]. The reason we have
saved the passwords in a different table is that it is considered to be
safer.

➔ users
◆ This table holds the data of users, such as user_id, email_address,

username, user_type. User_type defines if the user is leaser or renter.

4.5 Communication
As mentioned in 4.3, all the nodes of our system except for database communicate
with a custom messaging module. This module implements a protocol that must be
followed for meaningful communication. For example, if the server is able to verify
that an incoming message was sent from a valid Rendt application (according to the
protocol), it proceeds to serve the request inside the message. To verify messages,
the server application checks the headers and format of requests, and validates the
completeness of data that accompanies them (for example, the server can’t serve
‘sign-in’ request that hasn’t provided an ‘email-address’).

9

The protocol we used is quite similar to HTTP. Each message contains a message
body containing all useful information for server/storage to process the request, a
message header describing the message body (encoding, size in bytes) and a
mini-header that only comprises a 2 bytes integer describing message header size in
bytes.

4.6 Payment System
After doing the research we realised that in our case it is almost impossible to create
a payment system from scratch, since it required too much time. Therefore, we have
decided to use or integrate already existing payment systems to our project. For
implementing the payment system we are using Stripe API [11]. Stripe provides many
kinds of payment methods. For our project we chose to implement a “Card Payment
System”. The system has the client and server sides. After a payment assigned to
the clients, they can proceed to the payment. We require clients to enter their card
details, such as credit card number, expiration date, CVC code etc. in order to charge
them. They can also enter their email addresses if they need to receive a receipt after
the payment.

The security of the user data is the responsibility of the Stripe community [12], [13],
[14]. They handle the privacy and safety of the card details and other sensitive
information related to the users, such as addresses etc., during the transactions. In
our system we do not keep the user details during the payment process, neither allow
Stripe to save any sort of user data.

Transactions are handled by the Stripe as well. They send the required card details
to the bank, get response and continue the process in accordance. The whole
process is in the below Figure 2. The server is creating a PaymentIntent [15] then
after handling the transaction it returns an intent object (as seen in the Figure 3)
which gives us details about the payment process, payment status, id etc [16].

10

Figure 2: Stripe payment transaction cycle [17].

11

Figure 3: Stripe payment intent object example [16].

We are handling possible errors during or before the transactions happen. Errors,
such as invalid card number, expired cards, wrong CVC code etc. We also enabled
3D security protocol in our payment system. For example, if some banks require their

12

users to enter 3D security code, which is only a single-use, we provide a window [18]
(see Figure 4) where users enter the security code they have received from their
banks to proceed the payment.

Figure 4: 3D security requirement example [18].

4.7 Distributed System

In this part we faced big constraints and problems. We wanted to create a clustering
system on our server where codes written for distributed systems could be partitioned
and executed on different machines. We planned to test it with the MPI library for C.
We created a specific page in our GUI for distributed execution. Renters were going
to write distributed code, go to rendt and select distributed execution, after which they
were going to choose a specific number of leasers they needed. First leaser was
always server, so if number of chosen nodes is 4, number of actual leasers was
going to be 3 (master node is always server). Then the code would be sent to the
server, where the same instance of file would be created to accommodate all users(
so if the number of leasers is 3, 4 instances would be created; 1 instance would run
on the server). Server would distribute work to leasers by specifying their IPs and
ports (port of the docker which will listen to the executed process) and execution of
all instances would start at the same time(1 on servers, others on leaser’s dockers).
Everyone was going to execute same code ,but because IPs of all leasers are known

13

each leaser actually was going to execute the part of code assigned only to it (Renter
should use argument variables instead of thread IDs and IPs was going to be
assigned on nodes on the server; at the same time ports also should be specified as
argument variables in the code and they would also be assigned appropriate values
on server). This structure which was halfly implemented was considered to work until
we faced a big challenge which we couldn't overcome. We were not able to find a
port that we needed during node communications as it was not bounded with global
IP, instead port which listened to process execution was bounded with local IP. This
led to a situation where we weren't able to access the leaser's computers from other
leasers or server (accessing server from users is possible because port forwarding is
implemented automatically on all servers). So we came up with only 2 solutions to
solve this problem. First is that all leasers are going to configure their routers for port
forwarding. Second was to create our own custom pipes (in MPI because we were
testing with it) which will work as our system for file transactions between users(
client will try to connect to server which listens and waits for connection). First
solution was limiting rendt usability, because it led to a situation where we required
leasers to have technical background (renters should have technical background
because they are those who write the code, but leasers shouldn’t). Second solution
was very hard to implement in a limited amount of time. So we decided to add
distributed system implementation in our future plans.

5 Testing Details
The server side and basic client application (from which the current version has
evolved) of our system were the first subsystems to be built, and throughout our
developments they have been extensively tested and upgraded. It proved of crucial
importance that we implemented logging functionality on both systems which allowed
us to monitor and troubleshoot effectively.

The server and storage site are able to serve multiple clients simultaneously; they
both have passed our tests, carried out by connecting several clients and monitoring
the server, storage site and client responses. The storage site is capable of handling
quite large files; we have tested it with jobs of size up to 2.2GB.

The client application has been tested on Windows 10 Education (Build 18363),
macOS 10.15.2 and Ubuntu 18.04. GUI preserves its functionality and
user-friendliness on all mentioned platforms. Given internet connection availability the
application can connect to the server, submit a job and upload its files. Given,
additionally, Docker availability, the application can receive executables from the
server, oversee their execution in a docker container and send results back.

The client-server and client-storage communications have been tested for privacy
using Wireshark. Secure communication was one of our requirements, and we have
verified that all data traveling between the client and cloud is encrypted.

To test docker,we focused on running sample containers besides the main project
without using certain things i.e. without receiving or sending files from/to a computer

14

and seeing the results and tested certain aspects what is capabilities can we extract
files or manipulate them from our app and acted accordingly while merging it with the
main app then see whether it worked exactly the same when we use it on the app.

Stripe can help us to accept payments from everywhere in the world. However, the
company does not support merchant accounts for every country. What it is meant
here is, you need to settle your business in one of the countries that Stripe supports
merchants from. Unfortunately, Turkey is not in their list right now [19]. We have
created an account to be able to accept the payments and send the money to the
leasers. However, we could not activate the account and therefore we could not
check the payments with the real cards. In order to activate we either had to benefit
from Stripe Atlas [20] or get a merchant account in one of the countries in the list by
the help of other third party companies, such as Wyoming Merchant Services. The
problem with these options was that we had to pay a lot of money, around 1000 USD
[20], [21], to those companies to get a business account. However, we did not pay
that much money. Even if we did, we had to handle taxes as well, which was another
problem for us to handle. On the one hand, Stripe allows us to test our payment
system with the test cards they have provided [22]. We have checked our system for
different payment brands, such as Visa, Visa (debit), Mastercard, Mastercard (debit)
etc., we could get payments successfully done as it can be seen in Figure 5.

Figure 5: Successful payments from Rendt’s account

6 Maintenance Plan and Details
For maintenance, we plan on keeping on with the updates of docker and further
implement our system to keep them up to date of our users docker versions. We will
make further monitoring on our instances in Amazon Web Services so that we will

15

stop using unnecessary resources or acquire more of them in terms of our needs. For
example, we will test our servers how much request it can handle and scale it
according to our needs or we can create an auto scaling server if it might get difficult
to handle manually. We plan on making decisions by monitoring CPU and memory
usage or how many requests it’s handling. We will also maintain our storage units
with the same procedures however for both cases since we are using free tier
resources increasing our capacity will be according to our income and how much our
application will be used.The main thing about storage maintenance is constant
checking of logs, if something goes wrong it is possible (just like in server) to know
what exactly happened by checking logs. 2 folders are created in the storage
environment, one for codes sent by renter, other for output sent by leaser. By
checking their existence and content we can verify if something went wrong during
file transactions. Also we are planning on getting user feedback to listen to what they
need, what is broken and what needs to be fixed immediately.

7 Other Project Elements
7.1 Consideration of Various Factors
Apart from all the factors above, we have taken into account some elements outside
of the scope of the development process. Our project, although heavily dependent on
systems development, has some profound effects on and restrictions with regards to
factors such as public safety, welfare, environment and economy.

One of the most important and restricting factors of our project is public safety - the
security implications of our system (both personal and global), and privacy. Since we
administer the execution of one person’s code on another user’s machine, care must
be taken to ensure the privacy of the receiver user’s files and protection of their
system. On the other side of the coin, the receiving user should also have no access
to sending user’s code and files, which might be intellectual property. One other
concern could be the execution of malicious attacks with the aid of our system, such
as launch of DDOS attacks after being granted access to a number of machines.

Another major environmental factor that actually inspired this project idea is
concerned with leveraging idle computing power throughout the world. Most
computers aren’t actively used most of the time, so this computing power, instead of
sitting idle, can be provided to people that are willing to pay to use it. This would
result in less hardware being underused, and thus, less unnecessary hardware
production/consumption. Also, people in possession of idle computers are able to
profit from them, contributing to their welfare.

The economic implications of this project could also go beyond personal users
leveraging their hardware and turning it into profit. It can also help a group of people,
such as friends or a team in a company, establish a cluster among them with low
costs and share their resources freely between them.

Table 1. Various Factors

16

Effect
level

Effect

Public safety 8 Security of receiving user’s system and
privacy of their files. Privacy of sender’s code
and data. Risk of misuse of our system, e.g.
DDOS attacks

Environmental
factors

7 Idle computing power utilized; demand for
new hardware reduced.

Public welfare 5 Profit from idle computers.

Economic factors 5 More accessible clusters for companies and
teams.

Public health 0 N/A

Cultural factors 0 N/A

Social factors 0 N/A

7.2 Ethics and Professional Responsibilities
In view of all the factors in 7.1 and many others, we have identified some important
responsibilities that need to be addressed. First, we have decided to try our best to
ensure the safety of users of our system on either side, be it the security of their
system or privacy of their data. This is very important, and we sacrificed some
efficiency of our system and considerable development time to address this issue.

One other ethical concern is the fairness of the payment system. Wherever there is
monetary payment involved, things must work precisely, and we want our payment
system to also be foolproof. What’s more, we need to address some boundary cases
and have policies prepared for different scenarios; for example, if the task is
interrupted midway in its execution and never finished, does there have to be any
payment?

Finally, we need to sustain a certain level of reliability of users in our system. There
could be users (receivers) that have a very low task completion rate; they take on
some process, but it rarely terminates and sends back the results due to either their
interruption or factors out of their control, like electricity/internet shortage. We should
make sure to keep such users identifiable. To this end, we are planning to record the
task completion rate of receivers and have a reliability score associated with them
based on this rate that anyone will see before submitting their task.

7.3 Judgements and Impacts to Various Contexts
➔ Global Impact:

◆ There are no restrictions for any region in the world to use our system.
So, everyone with powerful computers can benefit from the system as

17

a leaser and others can use the leaser's computers for their own
purposes. And since payments can be accepted globally as well users
will not need to get any sort of account from other countries just in
order to use the system.

➔ Economic Impact:
◆ Systems with similar purposes are already in the market. However,

since it is being provided by the tech giants they can control the
money flow in the business easily, and that is why benefitting from
those systems are quite expensive. However, usage of our system will
be much cheaper in comparison. If users use our system they do not
have to pay a lot of money to buy new devices.

➔ Societal Impact:
◆ One of our purposes was to help people in the society to make money

with their own devices and others to do their jobs with the lowest
possible charge.

Table 2. Impacts of Judgements

Judgement Description: We decided to make Rendt a platform where everyday
computer users with minimal technical knowledge can
lease their computational resources in exchange for a
fee.

 Impact level Impact Description

Impact in Global
Context

8 Everyone can benefit
from the system in two
different ways: as a leaser
or renter

Impact in Economic
Context

10 Instead of paying lots of
money to the different
systems, by paying a lot
less users can benefit
from our system

Impact in Societal
Context

7 Individuals can make
money

7.4 Teamwork and Peer Contribution
Mahammad Shirinov:

1. Server

Built the initial server prototype with Huseyn for simple python file transfer
between two machines, execution (in native OS) and output file transfer back
to the first machine. Built the current server on top of this prototype;

18

implemented all client request types, their appropriate messages and
corresponding code snippets to serve those requests on the server side.
Implemented the responses to different requests, along with appropriate error
messages if needed. Configured logging for maintenance and debugging
purposes. Additionally, introduced client-server messaging protocol and
implementation, multithreading for scalability and TLS encryption.

2. Authentication

Conducted initial research with Nurlan on authentication methods. Built an
authentication service on client and server sides, which would communicate
for user log in/sign up. Introduced salting and hashing functions on the server
for safe password storage.

3. Client app backend

Built an initial client app with a command-line interface that could send files to
the server, receive them, execute them, send back results and retrieve
results. Later developed the client app back end on top of this implementation
to include more functionalities and prepared requests that would be properly
recognized and responded to by the server and storage.

4. Database queries

Wrote some database querying functions on the server side essential for
server and storage functionality as necessary.

Ibrahim Mammadov:
1. GUI development:

Worked on the client-side front-end of the application and established
connection between various front-end and back-end elements to provide
functionality with design. Developed 3 iterations of the design depending on
the changed requirements and developments in the project.

2. Fetching local Docker info:

A class for fetching local Docker daemon’s configurations, resource usage,
daemon existence and status.

3. Fetching machine details:

Getting machine details, such as CPU brand and model, number of logical
processors, total memory of the system.

19

Huseyn Allahyarov:

1. Client side back-end logic implementation:

Particularly worked in client server connection establishment at the beginning
of the project (was one of the first implemented parts of the project). In future
participated in different updates (update of something that already was or add
of new functionality) and bug fixes of client side back-end logic, especially
during storage implementation.

2. Server logic implementation:

Participated mostly at the beginning stages when the server was created and
some basic functionalities were added. In future occasionally participated in
updates or bug fixes.

3. Storage implementation:

Implemented storage on his own (more details in the section 4).

4. Distributed system implementation:

Researched and implemented the distributed systems part, but unfortunately
due to problems we faced (you can read about details in the implementation
part) it was decided to postpone this part for future work.

Cenk Er:

1. Virtualization of execution environment:

Worked on making code execution and file access less reachable for leaser
so that renters won’t be afraid that their codes are only read by them or the
outputs. Worked on making docker containers that can run python, java or C
scripts with only a single bash file and users can download pip libraries too for
their code or run any command for ubuntu to improve that container for their
use for the time they need. Tried to make it as automated as possible to a
certain degree and also we planned to create SSH between container and a
renter so that their experience would improve and use everything more
efficiently however we postponed that idea for the time being.

2. Notification system:

Worked on creating mail service for our users to get notifications about their
job informations i.e. sending an email automatically when the leasers
execution is done and output is uploaded to the server.

3. Distributed system implementation:

20

Got only the research part of the implementation to work on docker until it was
postponed.

Nurlan Farzaliyev:

1. Database:

Created a database on Amazon's RDS. Then using MySQL Workbench
created tables, made relations between them and by time when it is required
did necessary modifications. Provided a class which helped to query and
make changes to the database within the code, not using the tools.

2. Authentication:

Did research on authentication with Mahammad. Worked on providing a token
that would be used to authenticate users. Also added encryption methods for
using the data securely.

3. Payment System:

Did research on various payment systems on the market. After checking
documentations has decided on which method to implement. Set up a card
payment system for the project using Stripe API, which allows renters to make
payments globally. Tested the implementation with the test cards provided by
the Stripe.

21

7.5 Project Plan Observed and Objectives Met

Figure 6: Project Plan

As you can observe from the table by the 27th of May we met almost all our
objectives. Our actual work plan differs from the one we described in the analysis
report in 2 major ways. The first difference is that it took more time than we planned
for some parts of our project and the second is that we have no major dependencies
in the implementation phase of our project. The reason for absence of dependencies
is that everyone was working on their own part and only after partial completion of
dependent parts was merged with the main branch of our project and if there were

22

still some independent work left; its implementation was continued. So for example
when storage was completed by 50% and server by 60% they were merged because
by that time all dependencies of storage from server were already met and the rest of
the work in storage was only about it or concerned other parts of the project.

By 27th of May we almost finished our project. There are some small issues left in
GUI, client logic, Docker (mostly security issues which are impossible to overcome)
and payment system (some issues that must be handled, such as getting a merchant
account and paying taxes). In the distributed system part we faced major problems
which you can read about in detail in the implementation part (section 4).

7.6 New Knowledge Acquired and Learning Strategies
Used

Learning strategies
We mostly focused on standard learning strategies as internet surfing and research,
online courses, resources and documentations.

Knowledge Acquired
We learned a lot from this project. The first thing to mention is socket programming,
which we applied to client-server and client-storage communications. We learnt to set
up sockets, send/receive data and files over them and encrypt data transmitted over
sockets. There turned out to be more nuances to data persistence across large
systems, which we experienced when sending/receiving data over sockets in real
time, having to store that data in the storage/database and (almost) simultaneously
having to access that data from another endpoint/

For the GUI part, we learned a lot from the Qt [23] library’s workflow and usage. The
need for multithreading in application was not an expected requirement, but with trial
and error, we implemented the multithreading to avoid bugs and freezing while using
the app. Another crucial part is about the flexibility and responsiveness of the design.
High-DPI scaling [24] can be a problematic part when developing an OS-independent
application. This can cause problems such as non-smooth scaling of images,
different size of fonts for the texts and labels used, given size details in pixels,
unsupported fonts for different OSs, path details for different OS architectures and
hierarchies etc. PyQt [23] library was another problematic part as a library. Firstly, the
support for the library is different in each environment. Some OSs may not find or
compile the library’s components, some native features may require OS-dependent
knowledge for seamless integration, multithreading can be problematic for Qt widgets
as they require QThreads which are different than native threading libraries of the
Python, deployment and packaging may cause problems for different OSs etc. Class
hierarchy is another important aspect of PyQt as the differences between widgets

23

and windows can be unexpectedly crucial and may cause problems while running the
application. Inheritance in widgets and parent-child communication sometimes is
required for a better layout design and communication in-between different
components. Qt C++ and PyQt may differ as well as different versions of the PyQt.
Documentation is mostly up-to-date, however, some library differences are not
highlighted. Qt is also supported by 2 official libraries, namely, PySide [25] and PyQt.
Differences between these 2 libraries are also another factor to be considered when
choosing the right library for the development. Design details, colors, alpha values,
drop-shadow effects, font-weights, transparency and other factors play a huge role in
the development. If these factors are not properly specified, the necessary features
cannot be implemented or provided. Cleanup of the instances, hiding and destruction
of various components while surfing through different views can cause problems for
the user as well as the developer.

For the Docker part, we learned important syntax to build, create and run and docker
container images. We improved ourselves by acquiring more knowledge about
container networking, container volumes, how containers ports work. Also, we
learned how much accessible images we have on public repositories on Dockerhub
and the possibilities of what can be done with containers, and how it helps various
processes.

To be able to set up payment systems we have done a lot of market research. We
had some options that could be considered for global transactions. Some of them are
PayPal, Stripe, Maxipago etc. Making payments with PayPal and some other
systems is not supported by some countries. After doing some research we have
concluded that Stripe is our best option, not only that it supports payments globally
but also it had the best documentation that helped us to set up a payment system to
our project. After setting up the payment system we have learned how the real
transactions work, what is required to make global transactions and so on.
Additionally, in order to run and check our payment system locally we have learned
and used Flask.

For distributed job execution, even though we were not able to solve the problem we
faced, we acquired significant knowledge about the potential issues and
fundamentals of MPI. We clearly understood what port forwarding means and
realized the problems it posed to distributed computation on personal computers (as
opposed to servers), how IPs and ports could be used in MPI code instead of thread
IDs, learned a lot about MPI environment variables (communication variables; default
one is MPI_COMM_WORLD for example), how to assign specific ports to listen to
MPI execution and how to analyze contents of ports. Also worth to mention that we
learned a lot about different MPI functions created specifically for real distributed
environments (connect, disconnect, accept functions etc.). We researched a lot
about clustering systems to come up with an implementation plan we described in the
implementation part (section 4).

24

8 Conclusion and Future Work
8.1 More Secure VE

We plan on creating a more secure, more reliable virtual environment than docker
can offer so we are planning on changing our container system. Also if nothing we
find helps us in the way we need, we might create our own container/virtual
environment system and use it to create more secure environments for our users.

8.2 Distributed (clustering system)
Future plans include solving/circumventing port forwarding problems. Until now we
came up with 2 solutions, but there could be more. First one (not prefered, but the
easier one) is to divide leasers in 2 groups : port forwarded ones and not port
forwarded and allowing only port forwarded leasers to participate in distributed
execution. Second solution (preferred, but harder) is to create custom pipes between
leasers and our server where the server is going to listen to leasers’ requests, but
this solution has its own bottleneck. The problem is that in the second solution
communication between different nodes is only possible through the server (master
node). This means that leasers (workers) will not be able to communicate directly
with each other, they always should use a server (master) as a controller who
redirects their requests to other leasers, but this solution doesn’t require the division
of leasers in two parts. So both solutions have advantages and disadvantages, and
they will be considered in depth for future work.

8.3 SSH access to leaser
We would like to create an SSH tunnel between the renter's computer and the
container instance on the leaser’s computer to provide a more advanced experience
so that renters can accomplish more things with this application and create a more
functional environment for both users.

8.4 Payment
At the moment we can successfully make payments. However, as mentioned before
since our Stripe account is activated we cannot send the money to bank accounts
from the Stripe account. We would like to get a business account in the future and
connect that merchant account with our Stripe account to be able to benefit from
other functionalities of the Stripe as well.

8.5 Notifications and mobile app
For the future, we are planning to develop an app for users for getting notifications
while away from their machines, accepting/rejecting requests, leasing and un-leasing
their machines, paying for the execution in the app, seeing resource usage, request

25

details and statuses of their tasks, uptime, and more. With the addition of such an
app, we may achieve our ultimate goal of full automation and minimal interaction
between leaser and the machine as well as work efficiency on the go.

9 References
[1] “What is distributed computing and what’s driving its adoption?”. Packt.
https://hub.packtpub.com/what-is-distributed-computing-and-whats-driving-its-adopt
ion/ (accessed October 14, 2019).

[2] "The Distributed Computing Paradigms: P2P, Grid, Cluster, Cloud, and Jungle".
Dr. Brijender Kahanwal, Dr. T. P. Singh. International Journal of Latest Research
in Science and Technology, Vol. 1, No. 2, pp. 183-187, 2012

[3] University of Bristol. "Sum of three cubes for 42 finally solved -- using real life
planetary computer." ScienceDaily.
www.sciencedaily.com/releases/2019/09/190906134011.htm (accessed October
14, 2019).

[4] Vice. 2020. Seven Ways To Donate Your Computer's Unused Processing Power.
[online] Available at:
<https://www.vice.com/en_us/article/bmj9jv/7-ways-to-donate-your-computers-un
> [Accessed 27 May 2020].

[5] 2020. [online] Available at:
<https://www.cloudflare.com/learning/ssl/transport-layer-security-tls/> [Accessed
27 May 2020].

[6] Dev.mysql.com. 2020. Mysql :: Mysql Connector/Python Developer Guide. [online]
Available at: <https://dev.mysql.com/doc/connector-python/en/> [Accessed 27
May 2020].

[7] En.wikipedia.org. 2020. File Verification. [online] Available at:
<https://en.wikipedia.org/wiki/File_verification> [Accessed 27 May 2020].

[8] Chan, M., 2020. SQL Vs. Nosql - What's The Best Option For Your Database
Needs? - Thorn Technologies. [online] Thorn Technologies. Available at:
<https://www.thorntech.com/2019/03/sql-vs-nosql/> [Accessed 27 May 2020].

[9] Mysql.com. 2020. Mysql :: Mysql Workbench. [online] Available at:
<https://www.mysql.com/products/workbench/> [Accessed 27 May 2020].

[10] Crackstation.net. 2020. Secure Salted Password Hashing - How To Do It
Properly. [online] Available at: <https://crackstation.net/hashing-security.htm>
[Accessed 27 May 2020].

[11] Stripe.com. 2020. Stripe API Reference. [online] Available at:
<https://stripe.com/docs/api> [Accessed 27 May 2020].

[12] Stripe.com. 2020. Services Agreement - United Kingdom | Stripe. [online]
Available at: <https://stripe.com/ssa> [Accessed 27 May 2020].

[13] Stripe.com. 2020. Privacy Policy - United Kingdom | Stripe. [online] Available at:
<https://stripe.com/privacy> [Accessed 27 May 2020].

26

[14] Stripe.com. 2020. Integration Security Guide | Stripe. [online] Available at:
<https://stripe.com/docs/security> [Accessed 27 May 2020].

[15] Stripe.com. 2020. The Payment Intents API | Stripe Payments. [online] Available
at: <https://stripe.com/docs/payments/payment-intents> [Accessed 27 May 2020].

[16] Stripe.com. 2020. Stripe API Reference - Paymentintents. [online] Available at:
<https://stripe.com/docs/api/payment_intents> [Accessed 27 May 2020].

[17] Stripe.com. 2020. Stripe Terminal Overview | Stripe Terminal. [online] Available
at: <https://stripe.com/docs/terminal> [Accessed 27 May 2020].

[18] Stripe.com. 2020. 3D Secure Card Payments | Stripe Payments. [online]
Available at: <https://stripe.com/docs/payments/3d-secure#web> [Accessed 27
May 2020].

[19] Stripe.com. 2020. Stripe: Countries - Find Stripe In Your Country. [online]
Available at: <https://stripe.com/global> [Accessed 27 May 2020].

[20] Stripe.com. 2020. Stripe Atlas: Turn Your Idea Into A Startup. [online] Available
at: <https://stripe.com/atlas> [Accessed 27 May 2020].

[21] Services, W., 2020. Wyoming Merchant Services. [online]
Valuedmerchants.com. Available at:
<https://www.valuedmerchants.com/wyoming-merchant-services> [Accessed 27
May 2020].

[22] Stripe.com. 2020. Testing | Stripe Payments. [online] Available at:
<https://stripe.com/docs/testing> [Accessed 27 May 2020].

[23] Riverbankcomputing.com. 2020. Pyqt5 Reference Guide — Pyqt V5.14.1
Reference Guide. [online] Available at:
<https://www.riverbankcomputing.com/static/Docs/PyQt5/> [Accessed 27 May
2020].

[24] En.wikipedia.org. 2020. Resolution Independence. [online] Available at:
<https://en.wikipedia.org/wiki/Resolution_independence> [Accessed 27 May
2020].

[25] Doc.qt.io. 2020. Qt For Python Documentation — Qt For Python. [online]
Available at: <https://doc.qt.io/qtforpython/contents.html> [Accessed 27 May
2020].

27

