

Bilkent University

Senior Design Project

Project short-name: rendt

Analysis Report

Project Group Members:
Huseyn Allahyarov 21503572
Mahammad Shirinov 21603176
Ibrahim Mammadov 21603109
Cenk Er 21600937
Nurlan Farzaliyev 21503756

Supervisor: İbrahim Körpeoğlu
Jury Members: Hamdi Dibeklioğlu and Özcan Öztürk

Analysis Report

November 11, 2019

This report is submitted to the Department of Computer Engineering of Bilkent University

in partial fulfillment of the requirements of the Senior Design Project course CS491/2.

Contents

Introduction 4

1.1 Description 4

Current System 5

Proposed System 5

Overview 5

Functional Requirements 6

3.2.1 Registration 6

3.2.2 Main menu 6

3.2.3 Selection and accepting 6

3.2.4 Execution process 6

3.2.5 Payment 6

3.2.6 Reliability Rating 6

Non-functional Requirements 7

3.3.1 Performance 7

3.3.2 Compatibility 7

3.3.3 Maintainability 7

3.3.4 Security 7

3.3.5 User interface 7

3.3.6 Scalability 7

3.3.7 Reliability 7

Pseudo Requirements 7

3.4.1 Implementation 8

3.4.2 DevOps tools 8

3.4.3 Design paradigm 8

3.4.4 Data encryption 8

3.4.5 Testing 8

System Models 8

Scenarios 8

Sign Up 8

Login 8

2

Leasing hardware: post availability of your hardware 9

Accept job 9

Rent Hardware 9

Use-Case Model 11

Object and Class Model 12

Dynamic Models 13

User Interface 16

Other Analysis Elements 19

Consideration of Various Factors 19

Risks and Alternatives 19

Project Plan 20

Ensuring Proper Team-Work 23

Ethics and Professional Responsibilities 23

New Knowledge and Learning Strategies 23

References 24

3

Analysis Report
Project Short-Name: rendt

1 Introduction

With the ever-growing advancements in computer algorithms, machine learning tools, and

with the availability and accessibility of such tools, distributed computing and cloud

computing systems have become extremely widespread, to the point of almost being a

necessity. [1][2]

The biggest players in these fields are currently Amazon (AWS), Microsoft (Azure) and

Google (Google Cloud). What’s common among these providers is that they all have large

centralized networks of nodes somewhere in a server farm (or several farms), and they

provide users with computing power and other services such as storage using parts of that

network.

The fact that all the nodes belong to one party and are hosted in one or a few dedicated

locations gives them great reliability and ability to offer good pricing. However, since there

are few providers and millions of users, only the few big players make revenue. Also, the

amount of computing power that is available is dictated by the sole provider.

With Rendt we propose an alternative solution to this vast need of distributed and cloud

computing power, where multiple parties can offer their machines and get paid in return,

while users will still have access to the computing power that they need for their projects

and experiments. Similar solutions have been used in the academic community to solve

problems like the decomposition of natural numbers as a sum of three cubes, [3]
 but they

are voluntary in nature and have no commercial use. [4]

1.1 Description

Even with all this need for computing power, there is still a large amount of idle or

underused machines, which are mostly computers that belong to personal users or small

companies that don’t have distributed computing infrastructure. Rendt is a platform where

these idle resources can be shared with people who need them and turned into profit.

Users can choose a resource on their machine that they want to share, choose a type of

task they are willing to share it for, and possibly state their price. Then, other users in

need of that particular resource will see different offers for their query, choose the one

they like and start using resources. After the tasks are run and results sent back to the

task issuer, the payment will be made and transaction will be completed.

Using Rendt, somebody with powerful GPUs in their laptop who may not need them for

personal use, at least not all the time, can turn it into profit, and dually, somebody who

needs GPUs to run get some work done (train neural networks) but doesn’t have access to

any can look for people offering their resources and have access to them without owning

any GPUs. Rendt is going to play the role of a match-maker and regulator in such

transactions. It will host users that share their resources, along with detailed information

about their computing power, types and availability of resources and other information, for

example, the time the person is willing to lend their resources or the history of the tasks

they have successfully (or unsuccessfully) completed.

Rendt will be used for remotely running different kinds of tasks, such as training neural

networks, rendering videos, or plain mathematical (CPU-heavy) calculations. This

compartmentalization will help users better find suitable offers, since machines best suited

for a particular kind of job will be tagged by that category by the host themselves.

Additionally, Rendt will support distributed computations as well: if the user’s task is

parallelizable, they will be able to request more than one node for their task and run it on

them and then receive the single result back, as if running their task on some centralized

cluster.

4

When a user issues a task and selects a node(s) to run it on (or leaves the selection to the

system), the task goes to our central server, where a match is registered, and the transfer

of the needed files (data, binaries, scripts) is initiated (e.g. by passing the files from issuer

to the central server and from there to the host, by P2P file transfer etc.). At this stage, a

part (or the whole) of the payment the issuer has agreed to pay is deducted from their

account and held by Rendt. The host node(s) start running the task(s), and once done,

transfer the result files back to the issuer. Then, the host receives the payment and the

transaction is over.

2 Current System

To start with, we researched about similar projects to see if such a system is feasible. We

came across BOINC which is a system dedicated to volunteering CPU cycles for scientific

research for institutions such as SETI - Search for extraterrestrial intelligence. It is used by

research institutions to use volunteers’ computers for research purposes. However, it is

limited in the sense that only a few privileged users can run jobs, and the volunteers don’t

profit from this interaction.

With this research and the suggestions from our innovation expert, we started to research

the different technologies to implement such a system. First, we started to gather

information about WebAssembly which is a web-based technology that our innovation

expert suggested us to look into. WebAssembly is a fairly new technology that allows

codes written in high level languages like C/C++, Rust to be compiled into web. With

WebAssembly we could implement a system that doesn’t require any installation and

supports all the platforms. However, with extensive research into the matter, it turned out

WebAssembly would not be a good choice for such a system. The main reason for this is

that WebAssembly uses Enscripten under the hood which converts the code written in high

level languages to vanilla javascript. However, Enscripten is not able to convert all the

code natively and performance decrease is to be expected because of its usage of web

workers rather than cpu threads. Finally, WebAssembly and Enscripten cannot natively

support multithreaded code and low level libraries such as OpenMPI is not supported by

this technology.

Recently we came to a conclusion that a program written in a high level language is

mandatory and it should run cross-platform with native performance and unfortunately,

download and installation is necessary. With all this research, we finally settled for

implementation with C++ that runs cross-platform with the help of CMake.

3 Proposed System

This section includes details of the proposed system and its details for both users and

development.

3.1 Overview

Rendt is aimed to be a cross-platform desktop application that runs in the background

without the interference of rented PC’s user. The project should run natively to avoid

compromising the performance and security should be provided to protect the rented PC

from any malicious code or users. Security is an ongoing research mostly aimed at

virtualization technologies. Another point to be considered is the secure transfer,

compilation and execution of the tasks without giving out any details about the task to the

renter to provide confidentiality. Rendt’s main scope is general code execution at the

moment. Code execution may be very power demanding depending on the type of the task

to be executed. For tasks such as image analysis and computer vision, code execution

depends solely on the hardware and performance of the CPU and, in some specific cases,

GPU and execution time is inversely proportional with the hardware performance. Users,

especially renters, should be informed of the drawbacks of performance rental and the

decrease in CPU and GPU lifetime as a consequence as well as the responsibility of renting.

Secure and safe payment and refund systems should be provided for both renters and

users. Price of rentals should be calculated in terms of the hardware and performance.

Renters will be rated in terms of reliability, in other words, if a renter does not take the

5

responsibility of renting and fails to finish execution of the task, a bad reputation is to be

expected. Rendt’s users scope is expected to be large and unlimited and to accomplish this

goal, the system should be straightforward to use and technical knowledge of the user and

requirements should be minimal.

3.2 Functional Requirements

This section includes requirements for the key features of the system that a user will be

interacting with.

3.2.1 Registration

Users should be registered to use Rendt. With the user accounts, a proper rating system

can be implemented to display reliability rating of the user, hardware details, past

experience with Rendt (in terms of rentals) and other users can distinguish the renters via

their accounts. To be able to use the system, users should log into their accounts if they

have already registered, otherwise register and then log in.

3.2.2 Main menu

This is the first screen that a logged in user interacts with. Users will be selecting if they

want to rent their PCs or use available rental PCs. If a user wants to use the system,

he/she will be displayed a list of available PCs with the hardware details, hourly price and

rating. Users may visit the renters’ accounts to display information about the user and

reviews. If a user wants to rent his/her PC, a fair price will be calculated and suggested for

the current hardware, however user is responsible of setting the price. Renter will also set

a duration for the rental to provide himself/herself freedom to stop renting after certain

time.

3.2.3 Selection and accepting

When a user is selecting the rental system for use, it is his/her own responsibility to

choose the right system and user for the execution. If a task takes more time than the

renter’s duration, renter has the right to finish executing halfway. In other words, if a

rental PC is available for 2 hours and user’s execution takes more than 2 hours, renter can

wait for the execution or stop it without getting penalized.

Moreover, after user selects the PC to be rented, a notification/request will be sent to the

renter. Renter may or may not accept the request. The execution will start after accepting.

Another notification will be sent to the user about the response of renter.

3.2.4 Execution process

After selection and acception stage, user will be granted to use the rental PC for execution

of the task(s). Via a drag & drop screen, user will send the files for the execution and

status of the execution and file transfer will be displayed for both the user and renter. User

will be able to stop the rental and after he/she is done with it. Renter will be notified as

well.

3.2.5 Payment

For a secure payment, payments will be sent when the PC is rented and execution started,

but the renter will receive the payment once execution and rental is finished. This system

is to avoid misuse of the system. Via this payment system we aim to reinforce the

responsibility of both sides. An unfinished renting job will not get paid and the user’s

payment will be refunded. To avoid misinformation, the system will decide if the task

executed correctly and completely or the execution failed due to a technical failure.

3.2.6 Reliability Rating

Users’ reliability rating points will be decreased/increased depending on the execution

status of the task. If a task is not executed fully or failed due to a technical issue such as

shutting down the system, system will lower the rating of the renter.

6

3.3 Non-functional Requirements

This section includes requirements for the developers and development process.

3.3.1 Performance

To provide native performance, the system will be implemented with a high level language

such as C++ to execute the tasks natively without any performance compromises.

Virtualization is expected to be used to provide security, but should not decrease

performance. With wide virtualization support in majority of CPUs, performance drop

should be the case.

3.3.2 Compatibility

Rendt should be a cross-platform application to support a wide variety of systems and

OSs. To tackle this issue, we intend to use CMake with C++ which can compile a C++

program to run on Windows, MacOS and Linux systems. With the compatibility provided,

rendt will be available for the use of a wide variety of users with different hardware, OS

and configuration.

3.3.3 Maintainability

Rendt will utilize a server to serve the users and renters. Server will be responsible from

payment, reliability rating decision, rental requests and responses, file transfer and

displaying available PCs. Server will be maintained by us. Maintenance covers server rental

payment, network issues with the server and providing the system online.

3.3.4 Security

Rendt will be providing secure payment system, execution process and execution

environment. To provide a secure payment system, money transfer will be sent and hold

until the execution ends. Renter will get paid only after the execution finished successfully.

To provide a secure execution process, rendt will operate in the background without giving

away any information about the task to provide confidentiality for the user. Rendt will be

operating via virtual machine (VM) or a technology alike to provide a secure execution

environment. VM will provide the necessary security to avoid getting attacked in the

renter’s end. Any damage will be happening in the virtual environment.

3.3.5 User interface

As mentioned above, UI should be straightforward and a user without an advanced level of

technical knowledge of computers should be able to operate the rendt app and be able to

use it for renting or using rental PCs. To provide such a straightforward system, VM

initialization and installation should be handled by either the rendt installation or with

some automated or manual process. This is an ongoing process.

3.3.6 Scalability

System should be able to serve as many requests as possible. With the increasing number

of requests and users, system should be able to serve without any compromises. To tackle

this issue system should be able to serve with minimal resource allocation per request.

3.3.7 Reliability

Rendt should be a reliable source for the users that need better performing hardware. For

the rendt’s side, server should be up and running, serve the requests as necessary,

provide the security, scalability and compatibility. For the users/renters’ side, user

reliability rating should be considered before rentals alongside the reviews from the past

experiences of the user.

3.4 Pseudo Requirements

This section will provide specific information about the development process.

7

3.4.1 Implementation

Rendt should be implemented with a high level language such as C/C++ to provide native

performance and take advantage of multithreaded code and, if possible, distributed

execution. External libraries are expected to be used for the compatibility, user interface

and performance.

3.4.2 DevOps tools

DevOps tools will be utilized for the development process. These tools will include JIRA for

task assignments and issue handling, GitHub for the version control, Slack for

communication and etc. Usage of these tools will help us in the long-term for tracking

changes, handling changes, track the development progress, task distribution etc.

3.4.3 Design paradigm

Rendt will be developed with Object Oriented design pattern. OOP is the most comfortable

implementation pattern for all of rendt developers and a reliable choice for the

implementation.

3.4.4 Data encryption

All the data residing in the system and the server should be encrypted to provide

necessary security. User information, account details and payment details should be kept

encrypted in the system.

3.4.5 Testing

After each milestone in the development process, an advanced test should be executed

before starting to work on the next work package. These tests will be simulated on the

scenarios and boundary cases as well as rare but possible cases. Such process should

ensure reliability before going too deep into the other parts of the project to avoid

uncertainties.

3.5 System Models

3.5.1 Scenarios

3.5.1.1 Sign Up

Primary Actor: New user

Interests: 1. A new user wants to create an account

Entry conditions: 1. User has the GUI application installed on their machine

Exit conditions: 1. User has created an account

Success scenario event flow:

1. User open the application

2. User clicks the Sign Up button

3. User fills in the required information and submits form

4. User confirms his email address

3.5.1.2 Login

Primary Actor: An existing user

Interests: 1. User wants to log in to their account

Pre-conditions: 1. User has created an account and has their credentials

Entry conditions: 1. User has the GUI application installed on their machine

8

Exit conditions: 1. User has logged into his account

Success scenario event flow:

1. User open the application

2. User enters his credentials and clicks the Sign in button

Alternative event flow:

1. User open the application

2. User selects the Forgot Password option

3. User follows the link in his email to restore his password

3.5.1.3 Leasing hardware: post availability of your hardware

Primary Actor: User who wants to share his computational power (receiver)

Interests: 1. User wants to lease their hardware

Pre-conditions: 1. User has rendt application installed and has created an account

Exit conditions: 1. Receiver’s post is submitted the dashboard

Success scenario event flow:

1. User opens hardware leasing form

2. User fills in the details about the lease (time, number of cores etc.)

3. User submits the form

4. Rendt server receives the form and posts receiver’s details to the global dashboard

5. Receiver gets a confirmation message

3.5.1.4 Accept job

Primary Actor: User who wants to share his computational power (receiver)

Interests: 1. User wants to lease their hardware and earn money

Pre-conditions: 1. User has rendt application installed and has created an account

Entry conditions: 1. Receiver receives the request

Exit conditions: 1. Receiver accepts the request

Success scenario event flow:

1. Receiver receives a request of a task

2. Receiver accepts the execution of the task

3. Rendt begins the execution of the task on receiver’s computer

4. The task is finished or the allocated time is used up

5. Rendt sends the results of the execution to the sender and cleans receiver’s

environment

6. Receiver receives his payment in exchange of this transaction

Alternative event flow:

1. Receiver receives a request of a task

2. Receiver denies the request.

3.5.1.5 Rent Hardware

Primary Actor: User who wants to rent computational power (sender)

9

Interests: 1. User wants to rent hardware and run their jobs

Pre-conditions: 1. User has rendt application installed and has created an account

Exit conditions: 1. User submits their job to a node (nodes)

Success scenario event flow:

1. User opens the dashboard and uses filters to find node(s) he can use

2. User selects a node (nodes)

3. Rendt server sends requests to all the nodes

4. Nodes accept the request

5. Rendt initiates the execution of the task(s)

6. After tasks are executed and finished, they are collected back in the rendt server

7. Rendt server unifies the results and sends them to the sender

8. Paymen system coordinates the due payments

Alternative event flow:

1. User opens the dashboard and uses filters to find node(s) he can use

2. User selects a node (nodes)

3. Rendt server sends requests to all the nodes

4. Some nodes reject the request

5. User starts over from step 1

10

3.5.2 Use-Case Model

Figure 1. Use-Case diagram

11

3.5.3 Object and Class Model

Figure 2. Class model

12

3.5.4 Dynamic Models

Figure 3. Sequence diagram

13

Figure 4. State diagram

14

Figure 5. Activity diagram

15

3.5.5 User Interface

Figure 6. Log-in Screen

This is the first screen that welcomes the user. User, if already registered, needs to

log in to the system by entering his/her username and password. If user has not

registered yet, he/she can register by clicking the register button. If a user has

forgotten the password, he/she can click “forgot password?” button and an email

will be sent to the user.

Figure 7. Renter/Leaser selection

This is the screen that user will be entering after logging into the system where

he/she needs to select whether he/she wants to rent other available PCs or lease

their own.

16

Figure 8. Leasing Configuration

If user selects the lease option, a new screen opens up for hardware information

and configuration (where user may set how much hardware to be leased) and

duration for leasing (in terms of date and time).

Figure 9. Available PCs list

A user that wants to rent other available PCs (renter) will be displayed a list of

available PCs with necessary information including hardware configuration and

availability duration.

17

Figure 10. File upload screen

After selecting the PC to rent, and leaser accepts the request, a new window will

be shown where renter will upload the files to be executed.

Figure 11. File execution screen

After starting the execution, input and output files, execution status will be shown

to both leaser and renter. Renter has the option to stop execution when necessary.

When the leaser is done with the execution, he/she will end the session and the

payment will be sent to the leaser and the leased PC will be listed again.

18

4 Other Analysis Elements

4.1 Consideration of Various Factors

Apart from all the factors above, it is important to take into account some elements

outside of the scope of development process. Our project, although heavily dependent on

systems development, has some profound effects on and restrictions with regards to

factors such as public safety, welfare, environment and economy.

One of the most important and restricting factors of our project is public safety - the

security implications of our system (both personal and global), and privacy. Since we

administer the execution of one person’s code on another user’s machine, care must be

taken to ensure the privacy of receiver user’s files and protection of their system. On the

other side of the coin, the receiving user should also have no access to sending user’s code

and files, which might be intellectual property. One other concern could be the execution

of malicious attacks with the aid of our system, such as launch of DDOS attacks after being

granted access to a number of machines.

Another major environmental factor that actually inspired this project idea is concerned

with leveraging idle computing power throughout the world. Most computers aren’t actively

used most of the time, so this computing power, instead of sitting idle, can be provided to

people that are willing to pay to use it. This would result in less hardware being underused,

and thus, less unnecessary hardware production/consumption. Also, people in possession

of idle computers would be able to profit from them, contributing to their welfare.

The economic implications of this project could also go beyond personal users leveraging

their hardware and turning it into profit. It can also help a group of people, such as friends

or a team in a company, establish a cluster among them with low costs and share their

resources freely between them.

Table 1. Various Factors

 Effect level Effect

Public safety 8 Security of receiving user’s system and privacy of

their files. Privacy of sender’s code and data. Risk

of misuse of our system, e.g. DDOS attacks

Environmental factors 7 Idle computing power utilized; demand for new

hardware reduced.

Public welfare 5 Profit from idle computers.

Economic factors 5 More accessible clusters for companies and teams.

Public health 0 N/A

Cultural factors 0 N/A

Social factors 0 N/A

4.2 Risks and Alternatives

Some of the risks that we might face during our development are the ones concerning

efficiency and user convenience. For one, we might discover midway in our development

that the usage of virtual environments for security has profoundly negative effects on the

code execution performance, making it completely unusable. We have done some

preliminary research and have a high confidence that such a scenario is unlikely, but in the

event that it happens, we will stop executing senders’ code in virtual environments and run

19

them directly in native operating system of the receivers. To provide some level of

security, we will incorporate methods for detecting malicious users and specifically

malicious pieces of code, so as to protect the receiving users’ machines. We will also

provide the receivers with a manual of how they can maximally protect themselves (e.g.

receive tasks only when they are logged in as a non-admin user which does not contain

any of their personal files).

Another unforeseen difficulty may arise if the distributed execution of tasks turns out to be

extremely slow due to the inherent structure of our system (communication done over the

internet, rather than fast wired connections). In this case, we will shift our focus from

supporting distributed execution to P2P (one sender and one receiver) execution.

Another much less detrimental risk is concerned with user convenience. Before a receiving

user can receive and run any task, a virtual environment must be installed on their

machine. If during the development process we discover that the automatic/remote

installation of such a virtual environment by us is impossible or very hard, we will provide

the users with a step-by-step instruction manual so that they can set the environment up

themselves, with minimal to no tech knowledge.

Table 2. Risks

 Likelihood Effect on the project B Plan Summary

Virtual environment

inefficiency

<5% The code delivered to the

user could be malicious.

Use malicious code detector

and inform users of security

risks and practices.

Distributed processing

unscalability

<10% No distributed execution. Focus on P2P computation.

Inability to set up virtual

environment remotely

50% Users setup their

environment themselves.

Provide users with a

comprehensive instruction

manual.

4.3 Project Plan

We have identified some milestones and divided our project into subtasks. Before any

development, we are planning to prepare a high and low level design of our project, to set

out a roadmap for software architecture. Then, we will start the development, and have in

mind the following milestones: the initial working backbone of the system where one

user can send a job to one other user and have it executed, central server which will

serve as the delegator in all job transactions and regulate the sending/receiving of the

jobs, virtual environment software where we will coordinate the execution of all tasks in

a safe sandbox environment to provide security, the update of the backbone to

incorporate parallel tasks on different receiver machines, final GUI for all users to

interact with the system and finally a payment system for all the transactions.

Table 3: List of work packages

WP# Work package title Leader Members involved
WP1 High Level Design Mahammad Shirinov Huseyn Allahyarov

Nurlan Farzalyev
Cenk Er
Ibrahim Mammadov

WP2 Low Level Design Huseyn Allahyarov

Mahammad Shirinov
Nurlan Farzalyev
Cenk Er
Ibrahim Mammadov

WP3 P2P Task Execution Huseyn Allahyarov Mahammad Shirinov

WP4 Central Server Configuration Cenk Er Huseyn Allahyarov
Mahammad Shirinov

20

WP5 Virtual Environment Setup Ibrahim Mammadov Nurlan Farzaliyev

WP6 Distributed Task Execution Mahammad Shirinov Huseyn Allahyarov
Cenk Er

WP7 Build a GUI Ibrahim Mammadov Nurlan Farzaliyev

WP8 Payment System Nurlan Farzaliyev Ibrahim Mammadov
Cenk Er

Table 4. Work Packages in detail

WP 1: High Level Design
Start date: 11.11.2019 End date: 31.12.2019
Leader: Mahammad Shirinov Members involved: Huseyn Allahyarov

Nurlan Farzalyev
Cenk Er
Ibrahim Mammadov

Objectives: Define design goals and construct the architecture of the software system to be built.
Identify smaller subsystems that can be realized by individual subgroups.
Tasks:
Task 1.1 Writing report : To come up with Subsystem decomposition, hardware and software mapping with
access control and security and so on.
Deliverables
D1.1: High Level Design Report
WP 2: Low Level Design
Start date: 03.02.2020 End date: 17.02.2020
Leader: Huseyn Allahyarov Members involved:

Mahammad Shirinov
Nurlan Farzalyev
Cenk Er
Ibrahim Mammadov

Objectives: Through Low Level Design, we close the gap between the application objects and the
off-the-shelf components by identifying additional solution objects and refining existing objects
Tasks:
Task 2.1 Writing report: Define object design trade-offs, interface guidelines and engineering standards.
Deliverables
D2.1: Low Level Design Report
WP 3: P2P Task Execution
Start date: 18.02.2020 End date: 06.03.2020
Leader: Huseyn Allahyarov Members involved:

Mahammad Shirinov

Objectives: Setup the delegation of a task between 2 users in P2P fashion, see what could be done and
how, create a basic message passing interface.
Tasks:
Task 3.1 P2P system basics : Learn and understand the basic principles of P2P system
Task 3.2 Message passing interface : Establish the communication between 2 users.

Deliverables
D3.1: Basic backbone of the project - system configured in P2P fashion.
WP 4: Central Server Configuration
Start date: 06.03.2020 End date: 26.03.2020
Leader: Cenk Er Members involved: Huseyn Allahyarov

Mahammad Shirinov
Objectives: Setup and configure the central server to act as a delegator between task senders and receivers.
Tasks:
Task 4.1 Server creation : Create the server and set up its receiving and outgoing ports.
Task 4.2 Sender-server communication : Establish communication between the server and sender. The
server should successfully receive a task from the sender and store it, to further delegate to a receiver to be
run.
Task 4.3 Server-receiver communication : Establish communication between the server and receiver. The
server should successfully send a task to the receiver and receive back its results.
Deliverables
D4.1: The central server application.
WP 5: Virtual Environment Setup

21

Start date: 06.03.2020 End date: 10.04.2020
Leader: Ibrahim Mammadov Members involved: Nurlan Farzaliyev
Objectives: Create a virtual environment for safe execution.
Tasks:
Task 5.1 Virtualization basics : Learn the basics of virtualization and create it on the computer.
Task 5.2 Virtual environment creation : Create a virtual environment on other computer using the P2P
system and Server created for that task.
Task 5.3 Code execution : Try to execute code in a virtual environment. The code written on one computer
will be delivered to other computer and executed in its virtual environment.
Deliverables
D5.1: Virtual environment application.
WP 6: Distributed Task Execution
Start date: 26.03.2020 End date: 30.04.2020
Leader: Mahammad Shirinov Members involved: Huseyn Allahyarov

Cenk Er
Objectives: Realize the execution of a task submitted by one sender on several receivers’ computers.
Tasks:
Task 6.1 Task distribution: update our server to be able to send tasks to multiple receivers.
Task 6.2 Result collection: update our server to be able to reconcile results from multiple receivers.
Deliverables
D6.1: Updated fully functioning version of the core of our system
WP 7: Build a GUI
Start date: 10.04.2020 End date: 22.04.2020
Leader: Ibrahim Mammadov Members involved: Nurlan Farzaliyev
Objectives: Create well organized, user friendly and attractive interface of application
Tasks:
Task 7.1 User friendly interface : main task of this work package is to come with extremely user friendly
interface so that even non technical users would be able to use the application
Task 7.2 Sender GUI : Sender should come up with the sender window where he should be able to select
sending files, press send button and so on
Task 7.3 Receiver GUI : The receiver should get the window where he accepts the communication if his
device is free to use.
Deliverables
D7.1: GUI
WP 8: Payment System
Start date: 22.04.2020 End date: 30.04.2020
Leader: Nurlan Farzaliyev Members involved: Ibrahim Mammadov

Cenk Er
Objectives: Create safe and secure payment system
Tasks:
Task 8.1 Learning and investigation : Investigate the shortcuts for creation of payment systems
Task 8.2 Implementation of payment system : Implement the system with all considerations of security and
safety
Deliverables
D8.1: Payment system

Figure 12. Gantt chart part 1

22

Figure 12. Gantt chart part 2

4.4 Ensuring Proper Team-Work

We are planning to make use of Jira Software for collaboration and management of our

project, and to communicate and address our challenges through this platform. There are

a plethora of different variations of such tools, and a brief research of these tools showed

that Jira is the solution that has all major features that we need, and is free to use.

For version control and code hosting we will use Github. The contribution of each member

in terms of lines of code will be automatically tracked by Github. But the number of lines of

code is not a perfect indicator of work done. To ensure that every team member makes an

equal amount of contribution to the project and gains an equal amount of knowledge and

experience from it, we have carefully distributed the subtasks of our projects to different

members. Every team member will take lead in some subtask, and see it completed.

4.5 Ethics and Professional Responsibilities

In view of all the factors in 4.1 and many others, we have identified some important

responsibilities that need to be addressed. First, we have decided to try our best to ensure

the safety of users of our system on either side, be it the security of their system or

privacy of their data. This is very important, and we are willing to sacrifice some efficiency

of our system and considerable development time to address this issue.

One other ethical concern is the fairness of the payment system. Wherever there is

monetary payment involved, things must work precisely, and we want our payment

system to also be foolproof. What’s more, we need to address some boundary cases and

have policies prepared for different scenarios; for example, if the task is interrupted

midway in its execution and never finished, does there have to be any payment?

Finally, we need to sustain a certain level of reliability of users in our system. There could

be users (receivers) that have a very low task completion rate; they take on some

process, but it rarely terminates and sends back the results due to either their interruption

or factors out of their control, like electricity/internet shortage. We should make sure to

keep such users identifiable. To this end, we are planning to record the task completion

rate of receivers and have a reliability score associated to them based on this rate that

anyone will see before submitting their task.

4.6 New Knowledge and Learning Strategies

Our project is a very vast and complicated one and there are a lot that we should

investigate and learn. The most important thing is that we need to know how to implement

distributed systems and which technologies we should use for that. We are planning to

implement the core of our project using C++ and for distributed part we are planning to

use MPI(message passing interface) library. For virtualization we should learn how and

with which technologies we can create a safe and secure virtual environment. At the same

time we should gain some knowledge about cloud computing, network issues and how to

build and manipulate servers. We also are going to have some kind of payment system in

our project, so we should investigate about the implementation of money transaction

systems. Although we all worked and have experience in C++ we still should consider and

learn many implementation details of this language like CMake for example. The strategy

for learning we are planning to apply is very straightforward. We are planning to watch

23

some tutorials about distributed systems, cloud computing, C++ development and so on.

Also one of our group members took Parallel computing lesson and have some knowledge

about distributed systems, another member of our group is taking Network course which

we think will also be helpful and for the next semester some of us consider taking

distributed systems course which is the core of o

5 References

[1] “What is distributed computing and what’s driving its adoption?”. Packt.
https://hub.packtpub.com/what-is-distributed-computing-and-whats-driving-its-adoption/ (accessed October
14, 2019).

[2] "The Distributed Computing Paradigms: P2P, Grid, Cluster, Cloud, and Jungle". Dr. Brijender Kahanwal, Dr. T. P.

Singh. International Journal of Latest Research in Science and Technology, Vol. 1, No. 2, pp. 183-187, 2012

[3] University of Bristol. "Sum of three cubes for 42 finally solved -- using real life planetary computer."

ScienceDaily. www.sciencedaily.com/releases/2019/09/190906134011.htm (accessed October 14, 2019).

[4] “Seven Ways to Donate Your Computer's Unused Processing Power”. Vice.

https://www.vice.com/en_us/article/bmj9jv/7-ways-to-donate-your-computers-unused-processing-power
(accessed October 14, 2019).

24

